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Abstract

Nonthermal radio emission has been seen in the winds around a quarter of all O-stars.

The emission is attributed to shock accelerated cosmic rays. The shocks thought to be

causing the acceleration are either wind-embedded shocks due to radiative line driving

instabilities in the stellar wind, or shocks due to the colliding winds in a binary system.

Very few numerical Diffusive Shock Acceleration (DSA) simulations exist for these sys-

tems due to the complicated, multidimensional nature of the winds. We present the

first 2-D magnetohydrodynamic DSA (MHD-DSA) simulations of massive stellar winds

using the Multidimensional Adaptive Subcycling Tridiagonal solver (MAST), which has

been incorporated into the WOMBAT (sWift Objects for Mhd BAsed on Tvd) code

to solve diffusive shock acceleration for cosmic rays. Shock modification due to cosmic

ray pressure is shown to be important in describing the shock dynamics of the colliding

wind binary scenario. With 10−4 of the gas particles passing through the shocks being

injected as cosmic rays, about 15% of the wind ram pressure is converted into cosmic

ray pressure. In the wind-embedded shock scenario, the isothermal conditions in the

wind, due to radiative heating and cooling, precluded inclusion of cosmic ray feedback.

Future 1-D simulations of cosmic ray modified radiative shocks are suggested, as the

combined effects of radiative line cooling and cosmic ray feedback dramatically change

the shock dynamics from adiabatic analogues. Both cases show efficient cosmic ray

acceleration. In the case of the wind-embedded shocks, the isothermal nature of the

wind creates shocks capable of accelerating electrons up to 100 MeV and protons up

to 1 GeV with a spectral slope of 4. The colliding wind binary scenario produces very

strong shocks which are capable of accelerating electrons up 1 GeV and protons up to

1 TeV with a spectral slope of 4. While full radiation models will be performed in the

future, preliminary estimates indicate that the radio emission from the wind-embedded
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shock scenario may be extinguished due to free-free absorption. This would exclude the

wind-embedded shock scenario from being able to explain the observed radio emission.
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Chapter 1

Introduction

1.1 O-star Winds

O-stars are the most massive stars in the universe. The masses of these stars typically

range from 20 − 100 M⊙. Along with their high mass they also have very high surface

temperatures of 30, 000 − 50, 000 Kelvin. These high temperatures make O-stars pow-

erful blackbody emitters with spectral peaks in the near ultraviolet and luminosities in

the range of 105 − 108 L⊙.

The extreme conditions at the surface of these stars lead to strong radiatively driven

stellar winds. The radiative driving is caused by the mighty radiation field emitted by

the star. As the photons escape from the surface of the star they scatter off atomic

transition lines in the outer atmosphere of the star. This transfers enough momentum

to overcome the gravity of the star and accelerate the material. The densities in the

wind create a sufficiently high opacities such that all the emission at the line frequencies

is scattered. That being the case the scattered radiation is unavailable for acceleration

further out in the wind. However, as the material accelerates the transition lines in

the wind are Doppler shifted. This allows the material to interact with higher energy

photons which were not scattered by the inner wind. Thus the wind continues to

accelerate.

Eventually the material moves far enough from the star that it no longer gains

significant momentum. At this point the flow reaches its terminal velocity, typically

around 1000 − 3000 km/s. Large amounts of material is lost from the star in the

1
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process, around 10−6 − 10−4 M⊙ per year (see Lamers & Cassinelli (1999) for a full

discussion).

The severe winds interact with the surrounding interstellar medium (ISM). Large

wind blown bubbles are created which are parsecs in scale (Cappa et al. 2003). It is

in this environment that the O-star will eventually die in a catastrophic supernova

(Dwarkadas 2005). The resulting shockwave will propagate into the bubble. The inter-

action with the bubble can dramatically effect the evolution of the resulting remnant.

It is also the case that O-stars are commonly found in groups and clusters near where

they are born. The collective winds from these systems can give rise to bubbles that can

occupy tens to hundreds of parsecs (Chu 2008). The shocks driven from these winds

can trigger new star formation in surrounding molecular clouds (Lee & Chen 2009).

Supernovae from the cluster of O-stars can also blow large holes in the gas of the galaxy

(Mac Low et al. 1989).

The large scale impacts of the winds from O-stars make it imperative to understand

the dynamics of these winds. While the acceleration mechanism for O-star winds is well

understood, there is still much about the character of these winds to be investigated.

Among these puzzles are questions about the clumpiness of the wind, the role of the

magnetic field, and the morphology of the outflows (Fullerton et al. 2006; De Becker

2007; Cranmer & Owocki 1996).

1.1.1 Nonthermal Radio Emission

One of the big observational puzzles about O-star winds comes from radio observations.

The majority of radio emitting O-stars can be explained as thermal bremsstrahlung

emission in the stellar wind (Wright & Barlow 1975; Panagia & Felli 1975). How-

ever, about a quarter of radio emitting O-stars cannot be explained by this model

(Bieging et al. 1989). The spectral index of these winds is found to deviate significantly

from that expected for thermal bremsstrahlung emission in these systems (De Becker

2007). The brightness temperature of the emission is also found to be too high to be

explained via thermal bremsstrahlung.

This nonthermal emission is thought to be due to radio synchrotron (White 1985).

Synchrotron emission implies that relativistic cosmic ray (CR) electrons are being accel-

erated in the wind. The acceleration mechanism responsible for the electrons is theorized
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to be shocks in the wind.

1.2 Diffusive Shock Acceleration

The leading theory for CR acceleration at astrophysical shocks is Diffusive Shock Ac-

celeration (DSA) (e.g., Malkov & O’C Drury (2001) and references therein). DSA ac-

celerates particles through a first order Fermi process. Initially CRs are injected into

this process from the high energy tail of the thermal particle distribution. The injected

particles must have sufficient energy to cross the shock and propagate upstream. As

they do, they encounter Alfvén waves generated by the shock. The particles scatter off

these Alfvén waves and eventually are reflected back towards the shock. Since the flow

appears to be approaching in the particle frame when it is scattered, the particle gains

energy from the flow.

When the particle crosses the shock back in to the postshock region it encounters

more Alfvén waves. The particle will scatter and head back upstream. In the particle’s

frame the postshock flow appeared to be approaching, so the particle gains more energy

from the flow. After the particle crosses back upstream it will begin the process all over

again.

This scattering is a diffusive process which occurs over a characteristic length of the

particle’s gyroradius. As the particle gains energy it will travel further and further from

the shock before it is reflected. Eventually the particle will leave the system. Particle

escape is determined either by the particle being randomly scattered out of the system,

or by the particle gyroradius being larger than the scale of the system.

DSA has been confirmed in-situ via heliospheric measurements and through compar-

isons of models to observations for various astrophysical objects (e.g., Malkov & O’C Drury

(2001); Ellison et al. (1990, 1993); Berezhko et al. (1994); Drury & Völk (1981); Drury

(1983); Kang et al. (2002)). It has two main modeling regimes, test particle and non-

linear. In test particle DSA, the CRs do not contain a significant amount of en-

ergy density, as compared to the gas (e.g., Malkov & O’C Drury (2001); Drury (1983);

Marcowith & Kirk (1999)). Hence the CRs do not effect the flow dynamics. In these

cases, DSA produces a powerlaw CR spectrum, f(p) ∝ p−q. The powerlaw slope,

q, is dependent on the shock compression ratio, χ, by the relation q = 3χ/(χ − 1)
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(Blandford & Eichler 1987). This is due to the DSA process being sensitive to the

velocity convergence at the shock. The shock velocity convergence determines the in-

coming flow velocity that the particles perceive when they cross the shock. The larger

the flow convergence at the shock the greater the perceived flow speed by the CR. Thus

for a strong shock with a compression ratio of 4 the slope is also 4.

In nonlinear DSA, the CRs feedback on the dynamics (e.g., Malkov & O’C Drury

(2001)). CR feedback comes via an additional pressure on the gas attributed to the

CRs due to their large energy density. CR feedback can modify the shock, changing its

Mach number and morphology.

Shocks that are strongly CR modified can have much larger compression ratios than

regular adiabatic shocks. This is due to the CR pressure creating a shock precursor.

The precursor originates from CRs diffusing ahead of the shock and interacting with

the gas. This interaction compresses and heats the gas before it encounters the shock,

essentially warning the gas about the impending shock. The preheating of the shock

also reduces the shock Mach number due to the increase in the preshock sound speed.

In the normal nomenclature of CR modified shocks the entire region of both the normal

gas shock and the CR precursor are termed as the ”shock”. The normal gas shock where

the discontinuity in density, velocity and pressure occurs is termed the ”subshock”.

All of these changes to the shock also change the CR spectrum such that it is no

longer a single powerlaw but rather takes on a curved spectrum (Kang et al. 2009).

Particles at low energy only see the subshock, which has been weakened by the CR

precursor, as their diffusion lengths are small. At higher energy the particle diffuse

further and start seeing the CR precursor as well. The additional compression from the

precursor makes the shock compression look strong. Thus the spectrum is steep at low

energy as it only detects the subshock compression. The spectrum becomes flatter at

high energy where the shock compression is higher due to the CR precursor.

1.3 Shock Models

While DSA can explain the acceleration it does not explain the origin of the shocks.

Two scenarios have been proposed to generate the shocks in the wind. The current

favored model is that of a colliding wind binary (e.g., De Becker (2007) and references
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therein). In this scenario two O-stars are in close enough proximity that their winds

interact strongly. When this occurs very strong shocks are created which bound the

wind interaction region.

The other scenario utilizes shocks embedded in the wind. The shocks originate

from instabilities in the radiative line driving (White 1985; Chen 1992; Chen & White

1994). The instability itself is set off by a high velocity perturbation in the wind, which

is radially interior to a slower perturbation. The high velocity perturbation Doppler

shifts the lines in the perturbation, such that they scatter photons that would have

normally traveled further into the undisturbed wind. This scattering drives the feature

to accelerate. The lines in the slow component are Doppler shifted, such that no photons

interact with this component as the photons are scattered by interior wind, which is at

the same velocity. This causes the perturbation to grow as the high velocity component

is accelerated, and the low velocity component stagnates. This feature will eventually

steepen into a shockwave (see Lamers & Cassinelli (1999) for a full discussion).

These instabilities are randomly generated and could explain the observed clumpi-

ness of O-star winds (Owocki 2009). While this scenario is commonly used to explain

nonthermal emission in the case of a solitary O-star, these instabilities are also expected

to occur in binary systems. However, in binaries any emission from the instabilities is

expected to be dwarfed by the colliding wind region with its large high velocity shocks.

With an eye towards further understanding the origins of the nonthermal emis-

sion several groups have looked from an observational perspective (e.g., van Loo et al.

(2006); Pittard (2009); De Becker et al. (2009); Benaglia (2010); Blomme (2010)). In

many cases nonthermal radio emitting O-stars are discovered to be binaries lending

credence to the colliding wind binary theory (van Loo et al. 2006). In fact, this relation

of nonthermal activity to binarity has already been firmly established for Wolf-Rayet

(WR) stars (Dougherty & Williams 2000). However, in the case of O-stars there are

still a few stars which no binary companion has been detected (van Loo et al. 2006).

Observations in the X-ray indicate that some of these stars also have nonthermal

components in that band (e.g., De Becker et al. (2004)). Radiation at these energies

results from either inverse Compton (IC) or synchrotron from CR electrons in the wind.

It is expected, however, that in most cases the X-ray domain will be dominated by

thermal X-rays at the shock (De Becker 2007). There are also some indications that
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colliding wind binaries emit in TeV γ-rays. In the case of Westerlund 2 a colliding

wind WR binary, WR 20a, lies close to the emission centroid (Aharonian et al. 2007).

Emission in this band would require TeV energy particles interacting via IC, if electrons,

or proton-proton collisions producing neutral pions.

Theoretically it is easy to explain the emission as originating from a colliding wind bi-

nary (De Becker 2007). That scenario obviously produces two strong shocks that bound

the wind interaction region, which are capable of accelerating particles. Several groups

have either run hydrodynamical simulations of the wind collision region, or provided

analytic solutions to the CR distribution based on the expected flow dynamics with

the intent of recreating the emissions (e.g., Pittard et al. (2006); Pittard & Dougherty

(2006); Reimer et al. (2006)). These methods have thus far relied on models of CR

acceleration based on test particle DSA.

The wind instability scenario is not as cut and dry. It is unclear whether shocks

generated by the instability described above would be prolific enough to produce the

radiation. Recently van Loo et al. (2006) constructed a simple model using test particle

solutions of the CR spectrum at wind-embedded shocks to try to replicate the radio

spectrum. They found that in order to mimic the radio spectrum one spatially large,

strong shock or multiple spatially small, strong shocks were required. van Loo et al.

(2006) indicated that it was unlikely that the wind instability scenario could generate

either of these cases. While the wind instability would generate multiple shocks it is

expected that the shocks will get weaker as they propagate out from the star reducing

their ability to accelerate particles (Runacres & Owocki 2005). Therefore, the favored

scenario is that of a colliding wind binary.

1.4 Numerical Simulation of DSA

Full CR acceleration models of these systems including CR feedback on the fluid dy-

namics have not been executed. They have been computationally prohibitive owing

to the multidimensional nature of these systems. These simulations are important be-

cause if CR feedback is strong enough it can dramatically change the shock dynamics

and CR spectrum. Also, particles can be accelerated at both shocks in the colliding



www.manaraa.com

7

wind, or at multiple shocks embedded in the wind. This requires that the CRs dif-

fuse the distance between shocks without losing significant amounts of energy. All of

these effects can dramatically change the expected emission spectrum. Thus to gain a

fuller physical understanding of the CR dynamics in these systems, and to fully rule out

the wind-embedded scenario, full CR modeling needs to be done (Pittard & Dougherty

2006).

Nonlinear features of DSA make it important to numerically model the time depen-

dent effects. One method for solving the time dependent effects is to treat DSA as a

continuum process and couple the DSA dynamics to the ambient fluid dynamics. These

type of solvers are called kinetic solvers (see Chapter 2). Computational convergence

constraints require that the simulation resolve the characteristic CR diffusion length

(Jones & Kang 2005). As noted above the diffusion length is expected to be propor-

tional to the gyroradius of the particle in astrophysical settings (Blandford & Eichler

1987). With relevant CR momenta typically spanning several orders of magnitude, the

above constraint requires a large spatial grid with fine spatial resolution. Several tech-

niques have been implemented to reduce the computational cost associated with the

wide range of relevant scales. These include Berezhko et al. (1994) method for normal-

izing the spatial variable by the diffusion length, Kang et al. (2001) implementation of

adaptive mesh refinement (AMR) to DSA, and Jones & Kang (2005) Coarse-Grained

Momentum finite Volume (CGMV) method to reduce the computational expense of

DSA.

Still even with these techniques kinetic solvers have been limited to systems which

could be reduced by symmetry to a single spatial dimension, and typically only a single

shock. This restriction excludes a wide array of astrophysical situations from full DSA

modeling. Among those situations excluded are colliding wind binaries, stellar winds

with internal shocks, supernova remnants in complex environments, open star clusters,

and jets which are all inherently multidimensional. While approximate 1-D models

could be constructed, the missing complexity and lack of multidimensionality severely

inhibits the usefulness of the exercise for our physical understanding.
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1.5 Thesis Outline

Recent improvements in the efficiency of kinetic DSA solvers, namely CGMV which is

discussed in Chapter 2, have made it practical to begin developing multidimensional

solvers. We present in Chapter 2 of this thesis, to our knowledge, the first such solver

called MAST (Multidimensional Adaptive Subcycling Tridiagonal solver) which handles

multidimensional DSA in a kinetic solver. MAST is also one of the first codes that can

take advantage of parallel computation or any scheme that subdivides the grid such as

AMR, which greatly improves its ability to handle large multidimensional problems.

We will then use the solver detailed in Chapter 2 to do the first multidimensional

combined magnetohydrodynamic (MHD) DSA models of the wind-embedded and the

colliding wind binary scenarios. We couple the DSA solver to MHD instead of plain

hydrodynamics because the CR diffusion length is dependant on the magnetic field.

Thus to have a self consistent magnetic field, MHD is needed.

Since each scenario has its own unique features we will treat each in a separate

chapter. First we will deal with the wind-embedded shock scenario in Chapter 3, then

we will deal with the colliding wind binary scenario in Chapter 4. Finally a summary,

conclusions, and future prospects from both the runs will be detailed in Chapter 5.
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Chapter 2

Multidimensional Diffusive Shock

Acceleration

As described in the Introduction a multidimensional DSA solver will be critical to our

investigation of particle acceleration in stellar winds. To that end we describe our

implementation of a multidimensional DSA solver in this chapter, and provide tests to

show its robustness. In §2.1 we layout our numerical method and §2.2 we show one and

two dimensional tests of our code.

2.1 Numerical Method

For kinetic diffusion solvers the governing equation is the diffusion-convection equation

(DC) which describes the evolution of an isotropic (in momentum) CR distribution

function, f(x, p, t). Where x is the spatial location, p is the particle momentum, and

t is time. The DC equation can be written in multiple dimensions as (e.g., Skilling

(1975))

∂f

∂t
+ ~v · ∇f =

1

3
(∇ · ~v)

∂f

∂y
+∇ · (←→κ · ∇f) +

1

p3

∂

∂y

(

pD
∂f

∂y

)

+ S (2.1)

where v is the bulk flow speed, y = ln(p), ←→κ is the spatial diffusion tensor (we

will assume here that it is purely diagonal and isotropic), D is the momentum diffusion

coefficient, and S is a representative source function. Henceforth we will express the

9
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particle momentum in units of mpc.

Typically eq. (2.1) is solved in conjunction with the evolution of the MHD flow.

This interaction with the MHD fluid comes via a back pressure provided by the CRs,

Pc, which is defined as

Pc =
4π

3
mpc

2

∫ pmax

pmin

p4f
dp

√

1 + p2
(2.2)

Since the CR pressure is dependent on the CR mass, contributions to the CR pressure

from electrons will be ignored. The CR pressure is applied to the MHD equations,

detailed in §2.1.4 by modifying the momentum and energy terms in the following way

∂~v

∂t
+ ~v · ∇~v +

1

ρ
∇(Pg + Pc)−

1

ρ
(∇× ~B)× ~B = 0

∂Pg

∂t
+ ~v · ∇(Pg + Pc) + (γgPg)∇ · ~v = −L(x, t) (2.3)

Where L(~x, t) accounts for the energy lost via injection of particles from the thermal

gas into the CRs. Terms due to the CR inertia are neglected in such computations as

the mass fraction of CRs is generally very small.

As noted in Chapter 1, the heating and compression due to the CR precursor can

lead to substantial changes in the strength of the dissipative, gas subshock and to the

postshock conditions relative to those in a pure gas dynamic shock of the same Mach

number. Given these flow modifications in front of the subshock, it is helpful for the

sake of later discussion to identify specifically the unmodified, upstream conditions

by the subscript ’0’, the conditions immediately upstream of the gas subshock by the

subscript ’1’, and the conditions immediately downstream of the full shock structure by

the subscript ’2’.

The multidimensional solution of the combined MHD-CR equations can be done in

an operator and dimensionally split manner. Thus the multidimensional form of eq.

2.1 can be reduced down to the one dimensional form that utilizes a scalar diffusion

coefficient. The first term on the right hand side (RHS) of eq. (2.1), the momentum

convection term, is solved using the CGMV method (§2.1.1). The second term on the

RHS of eq. (2.1), the spatial diffusion term, is solved using the MAST method (§2.1.2).

The third term on the RHS of eq. (2.1), the momentum diffusion term, is only important
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for second order Fermi acceleration which is not treated in this thesis and as such will be

neglected. The final term on the RHS of eq. (2.1), the source terms, deals with particle

injection which is discussed in §2.1.3 and energy losses which are discussed in Appendix

A. Finally the MHD solvers used in tandem with the CR solvers are discussed in §2.1.4.

2.1.1 CGMV

CGMV is used to reduce the computational expense of the DSA simulation. We will

provide a brief description of CGMV, the full treatment can be found in Jones & Kang

(2005). It is well known that powerlaw CR spectra are common in most astrophysical

situations. CGMV leverages this by assuming that the CR spectrum will inherently be

a piecewise powerlaw in momentum. Utilizing this assumption one can solve the DC

equation using two moments of the CR distribution function n and g which are defined

as follows

nj =

∫ pj+1

pj

p2f(p)dp, gj =

∫ pj+1

pj

p3f(p)dp. (2.4)

Where j is the momentum bin index. One can then treat the momentum convection

term similarly to how one would treat any upwinded finite volume convection problem.

This formulation allows for the solution of the DC equation with an order of magnitude

less momentum bins than conventional solvers. The resulting reduction to the amount

of computational time via the reduced number of momentum bins makes the DSA

time step roughly the same order as the MHD time step. The results of solving the

momentum convection using CGMV have been shown to agree well with conventional

solvers, in spite of the reduced momentum resolution of CGMV.

2.1.2 MAST

While CGMV allows for the solution of the momentum convection, the spatial diffusion

still needs to be accounted for. In Jones & Kang (2005) the spatial diffusion was solved

via the second order, semi-implicit Crank-Nicolson (CN) scheme by a tridiagonal solver

of the following form for n at momentum bin j and spatial bin i for time step tk, the

solver for g is similar in form,
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A+
i nk+1

i+1 + A0
i n

k+1
i + A−

i nk+1
i−1 = C0

i ,

Ki,j =

∫ pj+1

pj
κifip

2dp

ni,j

Ki+1/2 =
Ki+1 + Ki

2
,

A+
i = −δKi+1/2,

A0
i = 1 + δ(Ki+1/2 + Ki−1/2),

A−
i = −δKi−1/2,

C0
i = nk

i [1− δ(Ki+1/2 + Ki−1/2)]

+ nk
i+1δKi+1/2 + nk

i−1δKi−1/2 + ∆tkFi, (2.5)

Where δ = (1/2)∆tk/(∆x)2 with ∆tk being the time step size and ∆x the spatial

zone width. Ki+1/2 is the diffusion coefficent at the zone boundary averaged over the

momentum interval pj < p < pj+1. Fi includes the solutions for the fluxes for the

momentum convection from the CGMV method and terms for particle injection. A

cylindrical version of this is laid out in Appendix B

For 1-D problems the tridiagonal solver is an efficient way to solve the diffusion

problem as the amount of work to integrate the entire grid is comparable to the MHD

step. However in multiple dimensions the number of zones to be solved gets large re-

quiring parallel computation. Normally parallel computation, or for that matter AMR,

requires the division of the grid into smaller domains that are distributed to each pro-

cessor. Dividing the grid in this manner effectively puts computational boundaries at

the edge of each domain. This poses a problem for the tridiagonal solver as it is sensitive

to boundary information due to its implicit nature. If used without modification for

problems with short diffusion time scales the tridiagonal solver will create boundary

artifacts which can lead to unphysical solutions.

The Multidimensional Adaptive Subcycling Tridiagonal (MAST) solver was devel-

oped to deal these issues. MAST modifies the tridiagonal solver such that it can be used

in schemes that require the subdivision of the grid such as parallel computation and

AMR. MAST has two primary components; adaptive subcycling and floating domain

boundary conditions, both of which will be discussed in the next two sections.



www.manaraa.com

13

2.1.2.1 Adaptive Subcycling

For typical diffusion coefficients used in DSA, especially those that increase with particle

momentum, the length that a particle diffuses in a MHD time step can be a considerable

portion of the computational grid. Normally the computational boundaries of the sim-

ulation are far enough away that a particle will not diffuse the entire length of the grid

in one MHD time step. When the grid is subdivided into domains the diffusion length

for particles on a particular domain can end up being much larger than the domain for

the MHD time step, creating problems for the tridiagonal solver.

One can mitigate the problem by subcycling the tridiagonal solver. Subcycling works

by dividing the MHD time step into even smaller time steps. The tridiagonal solver is

then executed over these smaller time steps until the sum total of the subcycle time

steps equals the MHD time step. This technique can be used to constrain the diffusion

length for a given subcycle to be less than the length of the domain. However in certain

cases this minimalistic constraint is not enough to maintain a physically reasonable

solution. Physically unreasonable solutions manifest themselves as negative CR densities

or pathological features which lead to negative CR densities. More subcycling can reduce

and eliminate unphysical features. MAST accounts for this by allowing the subcycling

to adapt itself to the evolution of the CR distribution.

The adaptive subcycling is executed as follows. The minimum number of subcycles,

ns,min, for a given domain and momentum is constrained to be

ns,min =
2κmax(p)∆t

ld∆x
. (2.6)

Where κmax(p) is the maximum diffusion coefficient at a given momentum for the

domain, ∆t is the MHD time step, ∆x is the zone size, and ld is the length of the domain.

Note that the theoretical maximum number of subcycles needed for any domain, that

required by an explicit solver, is given by taking ld = ∆x.

As the subcycling is executed the solver checks to see if the CR spatial distribution

is still physically reasonable, after all the CN scheme is unconditionally stable but

not always physically correct. Unphysical features typically result from sharp changes

in the CR distribution around which the CN scheme tends to make oscillations. These

oscillations start out on a small scale, only spanning a few zones with a small amplitude,
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but over time they can grow and produce negative CR densities. If the solver detects this

pathology in the distribution the solver stops the current subcycling. It then increases

the number of subcycles to be executed and restarts the subcycling. The solver finishes

when it makes it through all the subcycles without finding any pathologies.

2.1.2.2 Floating Domain Boundary Conditions

The constraint on subcycling in the previous section means that each domain and mo-

mentum will have a different amount of subcycling to accomplish. Synchronizing the

domain boundaries becomes difficult in this case. Strict synchronization would require

the amount of subcycles between all the domains to be the same, which is numerically

inefficient. The number of subcycles would be constrained by the domain that required

the largest number. Also, each domain would have to send boundary information for

every subcycle. Doing both would be at least as inefficient as treating the entire grid in

serial, probably more so. To preserve the benefits of parallel computation, one needs to

minimize the number of synchronizations between domains and allow each domain to

act independently.

MAST synchronizes boundaries at the beginning and end of subcycling. This can

cause issues for the tridiagonal solver as it is highly dependent on the boundary infor-

mation and sensitive to sharp features even with subcycling. To illustrate this problem,

let us consider two examples. The first is where a considerable number of particles will

diffuse off the domain in a MHD time step. The other will be the inverse case where an

adjacent domain is feeding particles into the current domain.

The first case is illustrated in Figure 2.1. The top panel shows the initial distribu-

tion on the domain (solid line) and boundary (long dashed) along with what the ideal

final solution (short dashed) would look like with no internal boundaries. Normally

if the domain boundary were not present the values that would occupy the boundary

zones would also increase as material diffused into them. Therefore using the boundary

information acquired from synchronization of the grid will not be consistent with what

the distribution naturally wants to do. The second panel illustrates what might happen

by maintaining the boundary values acquired from initial synchronization. The final

distribution (solid) is discontinuous with the boundary (long dashed), even worse the

distribution has picked up an oscillation due to the discontinuity.
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As a solution to this problem MAST utilizes floating boundary zones, illustrated in

the third panel. The initial distribution and boundary are shown as long dashed lines.

In MAST the boundary region is treated as a transition layer between the physical

domain and the data contained in the boundary. The transition layer consists of all the

boundary zones excluding the furthest boundary zone from the domain. The values for

the transition layer are set by making a linear fit between the first zone on the domain

and the furthest boundary zone from the domain, illustrated by the dotted lines in the

boundary. The fit is recomputed every subcycle with the boundary value furthest from

the domain being fixed in value for all subcycles. This linear transition layer inherently

maintains the continuity of the distribution on the domain with the boundary. By

using the furthest boundary zone as a pivot and allowing the boundary to float, it gives

the distribution on the computational domain knowledge about the information in the

adjacent domain without creating a discontinuity. Hence the final distribution (solid)

closely approximates the ideal solution and is free from pathological boundary artifacts.

The second case is illustrated in Figure 2.2. The first panel in Figure 2.2 is similar to

the first panel of Figure 2.1 but this time for the situation where boundary information

needs to move onto the domain. As illustrated there is no guarantee that the information

on the boundary will be continuous with the information on the domain. As shown

before discontinuities in the distribution, even at the boundary, can cause oscillations as

illustrated in second panel. MAST with its floating boundaries allows for the information

to smoothly diffuse onto the grid as shown in the third panel. The long dashed line

shows the initial distribution. Similarly to the previous case the distribution in the

boundary is recalculated with a linear fit which smoothly connects the boundary with

the distribution on the domain, illustrated by the dotted line. As solver subcycles

information from the boundary propagates onto the grid. As this occurs the boundary is

allowed to increase as well, maintaining a smooth transition. This allows the information

on the grid to smoothly incorporate the information in the boundary without creating

pathological boundary artifacts. As in the previous case the final distribution (solid)

closely approximates the ideal solution (short dashes).

This solution does not strictly give the same answer as treating the entire domain

via the standard tridiagonal method. This is because the boundary information used for

the solution is at least one MHD time step old and particles may diffuse over multiple
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domains. However, as we will show in §2.2, MAST produces a physically reasonable

answer that is approximately the same as the standard method both in CR spectrum

and spatial extent.

2.1.2.3 Domain Boundary Depth

The actual physical extent of the boundary in MAST is defined by the maximum diffu-

sion length of the CRs at that momentum for that time step on the domain

ldif =
κmax(p)∆t

∆x
(2.7)

The maximum size of the boundary is constrained to be no larger than the domain

size. Utilizing this boundary depth criteria reduces the amount of subcycling needed by

the solver. The larger boundaries makes the change in slope from the boundary to the

grid less dramatic decreasing the chance of seeding unphysical features on the grid. It

also allows the solver more information about what is going on in the adjacent domain

so that the distribution can better adapt to the adjacent conditions.

However this additional speed up tends to make the edges of the domains show

up more prominently in the CR distribution, though the edge effects are limited to

the region immediately surrounding the boundary (as shown in §2.2.2). This is due to

the one MHD time step delay in the boundary information. The edge features can be

decreased by reducing the boundary size down to the minimum size needed for the CN

scheme. Unfortunately the speed benefits of having the large boundaries, a reduction

in computational time of about an order of magnitude versus the minimum boundaries,

are lost by doing this. So it is a trade off of whether one needs the calculation to be

completed more quickly or if one wishes to have a distribution mostly free of domain

edge effects.

2.1.3 Injection

Injection is handled via a simple flux fraction model. In this model a small, fixed fraction

of the thermal particle flux through the gas subshock, ǫinj, is injected at a momentum

pinj = αcs2
, where α is a constant greater than unity and cs2

is the plasma sound speed

immediately downstream of the subshock (e.g. Jones & Kang (2005)). We will set
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α = 2.0 for this simulation, which is the commonly accepted value (Jones & Kang 2005).

This gives a source term for the DC eq. of S(p) = ǫinj(ρ1/(µmp))usw(x−xs)δ(p−pinj),

where ρ1 is the gas mass density just upstream of the subshock, µ is the mean molecular

weight, us is the subshock speed with respect to the plasma immediately upstream, xs

is the location of the shock center, and w is a normalized weight function that allows

the injection to be distributed across the numerical shock structure. This distribution

is put in place in order to prevent discontinuities in the CR distribution. The energy

extracted from the thermal plasma is simply L = 1
2ǫinjw(x)α2c2

s2
ρ1us.

2.1.4 MHD Codes

In multiple dimensions the equations for ideal MHD are

∂ρ

∂t
+∇ · (ρ~v) = 0

∂~v

∂t
+ ~v · ∇~v +

1

ρ
∇Pg −

1

ρ
(∇× ~B)× ~B = 0

∂Pg

∂t
+ ~v · ∇Pg + γgPg∇ · ~v = 0

∂ ~B

∂t
−∇× (~v × ~B) = 0

∇ · ~B = 0 (2.8)

Where ρ is the gas mass density, v is the velocity, Pg is the gas pressure with

Pg ∝ ργg , γg is the gas adiabatic index, and B is the magnetic field. Two different MHD

codes are used in this paper to demonstrate the effectiveness of MAST. The first is

AstroBEAR (Astronomical Boundary Embedded Adaptive Refinement), an AMR code,

and the second is WOMBAT (sWift Objects for Mhd BAsed on Tvd), a fixed grid code.

Each are discussed in the next two sections.

2.1.4.1 AstroBEAR

We will only provide a brief overview of AstroBEAR here, for a complete description see

Cunningham et al. (2009). AstroBEAR solves the MHD equations utilizing a MUSCL

(Monotone Upstream-centered Schemes for Conservation Laws) type solver along with
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a version of the Constrained Transport scheme described in Ryu et al. (1998) which has

been modified for AMR.

The AMR patches are normally placed where gradients in the MHD variables are

significant. For MAST the normal refinement criteria are expanded to include refinement

on the gradients of the CR distribution and around shocks. Regions surroundings shocks

are refined to level required for a converged solution, ∆x < 0.1lp, for which lp = κ/us is

the characteristic precursor diffusion length (Jones & Kang 2005). This region is refined

out to at least one diffusion length at the injection momentum.

For the refinement of the gradients of the CR distribution the maximum allowed

refinement is defined by which CR momentum is most important in that region, decided

by the CR density and gradient. As noted in the previous paragraph the minimum

resolution necessary for a converged CN solution is ∆x < 0.1κ/us. The domain in

question may not know what the shock velocity is for the CRs on the domain, which

could be from multiple shocks on separate domains. Because of this we opt to use

the characteristic diffusion length (eq. 2.7), ld, of a particle over a dynamical time,

achieved by setting ∆t to 1. Close to shocks the resolution needs to be the highest as

it is dominated by low momentum CRs. However further from shocks the resolution

required declines as higher momentum CRs dominate. AstroBEAR takes this into

account when deciding which regions to refine.

2.1.4.2 WOMBAT

WOMBAT is a highly parallel hybrid fixed grid MHD solver. Based off the TVD (To-

tal Variation Diminishing) MHD formulation of Ryu & Jones (1995); Ryu et al. (1995,

1998) this new implementation was coded by Peter Mendygral at the University of

Minnesota. WOMBAT has been shown to scale perfectly up to thousands of processors

and has a small memory footprint per processor1 . This gives it a distinct advantage

over AstroBEAR which currently has a large memory footprint per processor and is

inherently more difficult to parallelize owing to its AMR structure. The disadvantage of

WOMBAT for these type of problems is its fixed grid nature which over resolves large

portions of the grid.

1 Visit http://www.astro.umn.edu/groups/compastro/ for more details
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2.2 Discussion

2.2.1 1-D Test

We first do a comparison between the solver presented in Jones & Kang (2005) and

the MAST solver for a 1-D shock structure. The shock is a standing Mach 30 shock

(adiabatic index, γ = 5/3) with the incoming flow from the right side of the grid having

ρ = 1, velocity of v = 1 = 0.01c, upstream sound speed of cs = 1
30 , and upstream Alfvén

velocity of vA = 1
10000 with the magnetic field being parallel to the shock normal. The

magnetic field is kept weak in this test to allow us to focus solely on the DSA and

CR feedback. The grid has a physical extent of −50 < x < 50. We use continuous

boundary conditions for both the MHD and DSA solvers at the physical edges of the

grid. These boundary conditions use the zones adjacent to the physical boundary as the

values in the boundary zones. The shock is positioned at x = 0.5. An isotropic Bohm-

like diffusion coefficient is used where κ = 1.0p. Normally this would be dependant on

the magnetic field magnitude and direction. However as that would complicate the test

we will neglect the effects of the magnetic field on the diffusion. Fourteen momentum

bins logarithmically span the range between 0.000912 < p < 1097. With this shock

velocity, the injection momentum is pinj = .01, which means we will use a resolution

of ∆x = 0.0015625. The injection fraction is set to ǫinj = 1 × 10−4 and CR feedback

is included as well. For the Jones & Kang (2005) solver the run is computed using the

standard CN scheme where as WOMBAT utilizes the MAST solver with 16 domains

distributed evenly across the computational grid. This simulation was run out to t = 40.

Figure 2.3 shows the results at the final time. The left plot shows the spatially

integrated spectrum G(p) =
∫

g(p)dx for both the Jones & Kang (2005) solver and the

MAST solver. The right plot shows the cosmic ray pressure distribution for both solvers

and the domain boundaries for the MAST run.

Starting with the left plot the distributions are essentially the same below the high

energy turn over with a fractional error less than 2%. At the high energy turn over

the spectrum changes quickly which is where the maximum fractional error between

the two spectra occurs, which is no larger than ∼ 25%. The right plot shows that the

MAST distribution of CR pressure is free of obvious boundary artifacts but is reduced

by ∼ 5%. This reduction can be attributed to the fact that MAST behaves as if it is
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slightly less diffusive than Jones & Kang (2005). This reduction in the diffusion is due

to subdividing the grid. As noted before the boundaries are only synchronized before

and after MAST is executed. This has two effects, first it limits the particle diffusion

length between synchronizations to the domain size. Second it lowers the effective

”pressure” on the distribution to diffuse as the boundary data is not the most recent.

MAST mitigates some of these effects by utilizing floating boundaries but it does not

remove all of them. The lower effective diffusion reduces the number of particles sent

upstream of the flow to participate in acceleration. This in turn causes the decrease in

CR pressure. The reduction in CR efficiency can be compensated for by increasing the

CR injection.

Still the solutions have nearly the same spectrum and the pressures have similar

distributions in spite of the offset. This shows that MAST can solve the kinetic DSA

problem with multiple patches, and the solutions will be approximately the same as the

standard solvers. The subcycling in this case took its toll on the execution of the run.

The MAST solver in this case increased the length of time for the execution of the run

by an order of magnitude over the Jones & Kang (2005) solver. While not as good of

performance as the Jones & Kang (2005) solver it does allow the subdivision of the grid

and use of multiple processors.

2.2.2 2-D Tests

To show the effectiveness of MAST in 2-D we have constructed standing shocks of the

same type as the 1-D test but now tilted at 45o and 20o and excluding CR feedback.

A smaller grid was used for this run, −1 < x, y < 1 netting to 12802 in size. As in the

1-D test both the MHD and DSA solvers use continuous boundary conditions at the

physical edge of the grid. The simulation was run out to t = 0.5. The simulations were

done using WOMBAT and AstroBEAR. The WOMBAT runs were executed using 1

large domain, 4 domains arranged 2x2, and 16 domains arranged 4x4. The AstroBEAR

runs were done with 3 levels of refinement above the base level which had a resolution

of 1602.

Figures 2.4-2.6 show the results for the 45o case. Figure 2.4 shows a plot of the log

of the density at the final time with the AstroBEAR mesh overlaid in blue, and the

magnetic field overlaid in red. The features propagating in from the edge are due to the
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fact that the grid does not have infinitely deep boundaries. Thus the shock does not

look like an infinite plane but rather a shock of finite extent. Still at t = 0.5 the middle

of the shock has not been effected by the boundaries yet and still looks similar to a Mach

30 standing shock. Figure 2.5 shows a line cut of the spectrum at the center of the shock

for all of the cases, the 1-D solution is included for reference. We will compare against

WOMBAT 1 as it contains the full 2-D nature of the problem and uses the standard

solver in a dimensionally split manner. The maximum fractional error between all of

the spectra is ∼ 40%. All the WOMBAT spectra overlay each other within ∼ 10%.

Figure 2.6 shows the CR spatial distribution for p = 0.05. The distributions generally

look the same. However in detail edge artifacts are visible for the 4 and 16 domain case.

These are also present for the AstroBEAR case but the domains are small and as such are

hard to see on the image. Still the AstroBEAR distribution does look cleaner than the

4 and 16 domain case for WOMBAT. This is due to a difference in the boundary depth

used for AstroBEAR and WOMBAT. AstroBEAR has a boundary depth of 4 zones

for all of its meshes where as WOMBAT has a variable boundary depth as defined

in §2.2.3. As discussed in §2.2.3 the variable boundary depth has a faster execution

than the smaller boundary depth but the answer does tend to show edge effects more

prominently. Nonetheless the edges only effect their immediate surrounding and not

the larger morphology.

Figures 2.7-2.9 show the analogous run for 20o. This case is a more difficult test

as the velocity jump seen in the y direction is 36% that seen in the x direction unlike

the 45o case which has equal velocity jumps in x and y. As can be seen from Figures

2.8 and 2.9 the distributions are approximately the same at a similar level as the 45o

case. Thus MAST can handle a shock of any orientation to the grid without suffering

directionally dependent effects.

2.3 Summary

Multidimensional effects can dramatically change the evolution of the flow, which im-

pacts the evolution of the CR population. MAST is the first solver that handles mul-

tidimensional kinetic DSA. As demonstrated above the MAST solver produces results

approximately the same as normal kinetic solvers in one and two dimensions. This
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allows for the exploration of more complex multidimensional flows with the benefits of

parallel computation and AMR.

MAST has its limitations, as it is only an approximate solution. The CR dis-

tributions derived from MAST are similar in spectral shape, distribution shape, and

magnitude to standard kinetic solvers. The approximate nature of the solution is the

trade off for MAST in allowing subdivision of the grid. The additional cost to solve

DSA using MAST is about an order of magnitude more than the Jones & Kang (2005)

solver. While not as efficient as the solver described in Jones & Kang (2005) it does

allow for multidimensional and multiprocessor DSA calculations.

MAST opens the door for DSA simulations of a wide array of astrophysical systems.

In the next chapters we will use MAST in combination with WOMBAT to model wind-

embedded shocks in O-star winds and colliding wind binaries in multiple dimensions.
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Domain Boundary

Initial

Ideal Final

Fixed Boundary Final

MAST Final

Floating Boundary

Figure 2.1: Illustration showing what happens when particles diffuse off a domain in a
fixed boundary solver versus the MAST floating boundary solver.
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DomainBoundary

Initial
Ideal Final

Fixed Boundary Final

MAST Final

Floating 

Boundary

Figure 2.2: Illustration showing what happens when particles diffuse on to a domain in
a fixed boundary solver versus the MAST floating boundary solver.
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Figure 2.3: Left: Spatially integrated spectrum for 1-d solver for the entire grid and
MAST in WOMBAT with 16 domains. Right: Cosmic Ray Pressure distribution for
1-d solver for the entire grid and MAST in WOMBAT with 16 domains. The vertical
dotted lines represent the domain boundaries in the MAST run.
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Figure 2.4: Log of Density for 45 degree shock at t = 0.5. Red lines are magnetic field
orientation. Blue lines are the mesh for AstroBEAR.
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Figure 2.5: Spectrum at 45 degree shock at t = 0.5.
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Figure 2.6: log(g(p)) at p = .05 for a 45 degree shock at t = 0.5.
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Figure 2.7: Log of Density for 20 degree shock at t = 0.5. Red lines are magnetic field
orientation. Blue lines are the mesh for AstroBEAR.
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Figure 2.8: Spectrum at 20 degree shock at t = 0.5.
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Figure 2.9: log(g(p)) at p = .05 for a 20 degree shock at t = 0.5.
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Chapter 3

Multidimensional DSA at

Wind-Embedded Shocks in

O-star Winds

Now that we have a solver that is capable of treating multidimensional DSA, we will

now consider the problem of modeling wind-embedded shocks around a single O-star.

As noted in Chapter 1, this scenario is currently disfavored as the explanation for the

nonthermal emission from O-stars. However, in order to fully rule out this scenario full

DSA modeling must be undertaken. In §3.1 we will lay out our simulation set up and

in §3.2 we will discuss the results of the simulation.

3.1 Numerical Method

The dynamics governing the line driven instabilities that lead to wind-embedded shocks

around O-stars are complex as noted in Chapter 1. The added complexity of DSA

makes a fully consistent treatment of these systems computationally prohibitive. To

simplify the problem we will model the stellar wind and instabilities after they reached

their asymptotic form. Given these simplifications we neglect the gravity of the star

and radiation driving, as they only play a role in the wind dynamics when the wind

is being accelerated. Radiative heating and cooling can still be important in the wind

32
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dynamics. Unfortunately, the code we will use does not incorporate these dynamics

robustly. However, we can approximately account for the dynamical effects of these

processes as described in §3.1.2. We will discuss the particulars of MHD-DSA solver

used for this simulation in §3.1.1 and in §3.1.2 we layout the initial conditions for this

simulation.

3.1.1 MHD-DSA Solver

We will use the DSA solver described in Chapter 2 in conjunction with the WOMBAT

MHD solver. While WOMBAT can handle 3-D MHD simulations, we will limit our-

selves to modeling the wind in 2.5-D cylindrical coordinates (Ryu et al. 1995). In 2.5-D

cylindrical coordinates we assume symmetry around the z axis. However, the velocity

and magnetic field components in the φ direction still affect the flow dynamics. Unfor-

tunately, 3-D simulations are still prohibitively expensive for DSA-MHD simulations.

Thus 2.5-D cylindrical coordinates allows us to simulate the wind in an approximately

3-D manner.

3.1.2 Simulation Setup

Generally O-stars have wind structures that are largely independent of the mass of the

star (Lamers & Cassinelli 1999). As such we will model a representative 22 M⊙ O-star

which has a radius Rs = 8.5 R⊙ and luminosity of 2.3× 105 L⊙ (Table 3.1 contains the

simulation parameters). Since we do not include gravity or radiation physics needed to

self consistently model the wind acceleration we will treat the wind when it reaches its

asymptotic limit. This typically happens around 10 Rs for O-stars, with an asymptotic

velocity of 2000 km/s and mass loss rate of Ṁ = 10−6 M⊙/yr (Lamers & Cassinelli

1999).

The wind temperature is maintained at 104 K due to photoionization from the star’s

ultraviolet (UV) flux which prevents the wind from cooling as it expands (Lamers & Cassinelli

1999). The wind is not only heated due to the radiation flux from the star but

strong metal lines cool the gas when heated above 104 K (Kholtygin et al. 2003). The

shocks generated by the line driving instability are affected by strong cooling as well

(Runacres & Owocki 2002). The heating and cooling length for the winds and shocks
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we will model here is shorter than any distance we can feasibly resolve computation-

ally. The combined rapid heating and cooling of the wind to 104 K makes the wind

behave isothermally rather than adiabatically. As such we will treat the wind as an

approximately isothermal fully ionized proton-electron plasma (γg = 1.001). We will

also enforce this fact when the CR pressure and injection energy losses are applied to

the ambient medium.

The strength of the magnetic field around O-stars is not well known as few mea-

surements exist (Donati & Landstreet 2009; Kholtygin et al. 2010). However those that

are detected, presumably those with the strongest field, have a surface magnetic field

strength in the range of 100− 1000 Gauss (Donati & Landstreet 2009; Kholtygin et al.

2010). We will use a magnetic field strength at the surface of the star of 10 G. This

value, based on observational completeness arguments, should be representative for

many O-stars (Kholtygin et al. 2010). This is important as radio observations show

that a quarter of observed O-stars show nonthermal emission. The high frequency of

nonthermal radio detection indicates that whatever is causing the emission is not limited

to exceptional systems. A surface magnetic field strength of 10 Gauss also lies in the the-

oretical range of expected magnetic fields for nonthermal emitting stars (van Loo et al.

2004).

The actual geometry of the field is observationally unknown. O-stars are thought to

have a simple magnetic field configuration of a rotating radial field (Lamers & Cassinelli

1999). Rotating stars, such as our own Sun, bend their radial fields into the azimuthal

direction due to the drag of the field lines frozen into the wind (Lamers & Cassinelli

1999). In this case we assume the azimuthal component is dominant compared to the

radial component. This has the advantage of allowing us to ignore the radial field,

which is difficult to model numerically. We use the following magnetic field in spherical

coordinates,

~B = Bs
vrot

vw

(

Rs

R

)

H(θ)φ̂ (3.1)

Where Bs is the magnetic field at the surface of the star, R is the radius, vrot is the

rotational velocity of the star, and vw is the wind velocity. H(θ) is a function that has

a value of 1 for a polar angle θ greater than 90o and a value of −1 below 90o. This
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direction change is caused by the requirement that the radial field, which the azimuthal

field is derived from, be divergence free. For O-stars there is no corelation between

the magnetic field strength and rotational velocity as there is for other types of stars

(Donati & Landstreet 2009). As such we use a stellar rotational velocity of 25 km/s

which gives a rotational period of 17.2 days. This will bend the field into a dominantly

azimuthal field by the wind radii modeled here.

The line-driven instabilities are modeled to be similar to those produced by (Owocki

2009). We do not model the development of the instability. Rather we take the asymp-

totic form and put it into the ambient wind flow. The instabilities are constructed such

that they preserve the kinetic energy density of the wind at the location where they are

injected. Simulations of the development of the instabilities show that the maximum

velocity jump is about 50% of the wind velocity (Owocki 2009). The form of the insta-

bility is a high velocity, low density region interior to a low velocity, high density region

(see Figure 2.1) (Owocki 2009). These instabilities are well developed by the time the

star’s wind goes asymptotic (Runacres & Owocki 2002; Owocki 2009). As such we will

use a driving region radius of 50 Rs which places us firmly in the asymptotic wind,

where the radiative driving of the wind and instabilities diminishes.

The size of the velocity jump from the ambient wind velocity is randomized in this

calculation with the maximum set to 50% of the wind velocity. The instabilities are

randomly generated in angular wedges around the driving region, each π/32 ∼ 5.5o in

angular extent. The randomization of the velocities and positions of the instability is

justified as the seed for the instability are random velocity fluctuations in the wind.

The instabilities are injected in to the flow at the outer boundary of the driving region

with the instabilities themselves being 4Rs in radial extent. The frequency, angular

extent, and placement of the wedges are designed to mimic the clump model used by

(Hamann et al. 2009) to explain X-ray emission from O-stars (see Figure 2.2). After

the instability is injected it is free to evolve as the MHD demands without any further

driving.

The injection fraction for the electron and protons is set to ǫinj = 10−4 which is

typical for most shock Mach numbers (Kang & Jones 2007). However since the elec-

trons are passive they can be rescaled to any injection fraction. As noted in §1 it is
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commonly thought that the CR diffusion is dependant on the gyroradius of the par-

ticle, rg. As such we use an isotropic Bohm-like diffusion coefficient of κ = 1
3rgc =

κo
p
B = 3.13 × 1016 p

B cm2/s where B is in Gauss (Blandford & Eichler 1987). We set

the CR momentum range to span 14 momentum bins logarithmically spaced between

0.000912 < p < 1097.

The electron population is allowed to suffer energy losses due to inverse Compton

(IC) and synchrotron. Around O-stars the radiation field is highly anisotropic and con-

tains a considerable number of ultraviolet photons. With such an extreme environment

the full Klein-Nishina (KN) cross section becomes important in modeling of IC losses

(see Reimer et al. (2006) for a full discussion). A full treatment of the effects of the

KN cross section on the IC losses is very difficult and expensive to treat numerically.

Reynolds (1982) showed that for a particle population that is isotropic in momentum,

IC in a highly anisotropic photon fields is approximately the same as the isotropic case.

That being the case we can safely assume isotropy to simplify the cross section. Un-

fortunately, even with this assumption the problem of including the KN cross section

in the DSA calculation is computationally difficult. As such, we utilize the isotropic

Thomson limit of IC for the sake of computational simplicity. This has the effect of over

estimating the electron energy losses close to the KN limit. Thus any maximum electron

energy that is derived from this simulation will be a lower limit. The radiation field

for IC used falls off as 1/R2 away from the star. The energy losses for the protons are

ignored as the threshold for energy losses due to photo-pair and photo-pion production

in this environment is around 1014 eV. Energy losses due to proton-proton collisions are

also not included as the losses are not significant over the timescale modeled here.

As noted above in §2.1.3 that the CR injection momentum is dependant on the im-

mediate postshock sound speed. With the isothermal assumption we lose all information

about what the normal adiabatic postshock sound speed would be. As such we use a

fixed injection momentum of pinj = 0.01 which is the characteristic injection momen-

tum for shocks of moderate Mach Number (M ∼ 10). Jones & Kang (2005) noted that

the resolution needed to create computationally converged solution is ∆x < 0.1lp(pinj),

where lp is the CR precursor length which is defined as lp = κ/us with us being the shock

velocity. For our simulations we use a grid resolution of ∆x = 0.03125 Rs, which meets

the Jones & Kang (2005) criterion for a shock Mach number of 10 and a characteristic
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magnetic field strength of 0.25 mG. As will be shown in the next section this Mach

number ends up being the maximum Mach number for the shocks generated in this

simulation. The spatial extent of the grid is −200Rs < x < 200Rs and 0 < y < 200Rs

giving a total box size of 12800 × 6400.

3.2 Results

3.2.1 CR Feedback in Isothermal Environments

We noted in the previous chapters that CR feedback can be an important factor in the

evolution of the flow. However when we attempted to apply its effects in this simulation,

we could not get the resulting flow to be numerically stable. The reason for this is due

to the isothermal nature of the shocks and the dependence of the diffusion coefficient

on the magnetic field.

With the magnetic field being azimuthal it behaves similarly to the density in terms

of its compression. In isothermal shocks the compression ratio depends on the square

of the Mach number. As such the magnetic field is dramatically enhanced at the shock.

The high magnetic field in the postshock flow reduces the diffusion length and confines

many of the CR particles to a very small region. Any particles that do manage to escape

upstream are compressed by the shock again. This creates a very high local CR pressure

which is restricted to the clump and thus cannot form a strong CR precursor. With

out a strong precursor the incoming flow is not slowed and the shock is not weakened.

Thus injection and particle acceleration do not change and the CR pressure continues

to increase. Eventually the CR pressure becomes so high in the clump and the gradient

of the CR pressure becomes so strong that it blows apart the clump violently. This is

undesirable as it causes very large velocities to suddenly appear on the grid which cause

numerical instability.

The fact that this occurred in our simulations indicates that we have not fully

resolved the precursor in terms of its effects on the MHD. This is due to the precursor

being much shorter than we expected due to the high magnetic field in the clump.

Fully resolving the precursor would be computationally prohibitive, so we have opted

to investigate the multidimensional DSA in absence of CR feedback. However, in light

of this behavior and the importance of radiative cooling in astrophysical environments
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further investigation into the dynamics of CR modified isothermal and radiative shocks

in a simpler setting is warranted, which will be dealt with in a future paper. To our

knowledge only two fluid models of the effects of CR feedback on these type of shocks

have been performed and no investigations of full DSA including feedback at radiative

and isothermal shocks exist (e.g., Wagner et al. (2006)).

3.2.2 MHD Evolution

An image of the logarithm of the gas number density can be seen in Fig. 3.3 at t = 0.75,

where time is in units of Rs/cs. Since the flow is isothermal and the magnetic field is

azimuthal the pressure and magnetic field takes an analogous form to the density. One

can see the development of the instabilities by following their evolution radially, as

the instabilities are advected outward with the ambient wind as time progresses. The

simulation is ended when the CR’s accelerated by the clumps reach the edge of the grid.

The instabilities themselves develop in to dense clumps that travel slower than the

wind. This is due to the low density, high velocity region of the instability running into

the high density, low velocity region, which we will call from here on out the clump.

A transmitted shock is formed at the interface that propagates through the clump.

Without any radiative driving to sustain it, the high velocity region dissipates leaving

the clump to interact with the ambient wind.

A simplified picture of the clump in its own rest frame can be seen in Fig. 3.4. For

this discussion we will call the upstream region ’1’, the post bowshock region ’2’, the

shocked clump region ’3’, and the unshocked clump region ’4’. These subscripts are not

related to the subscripts defined in Chapter 2 for use in discussing CR modified shocks,

and are intended only for the present discussion. In the following discussion we will

ignore the effects of the magnetic field as the plasma beta in the wind is around 300.

For isothermal shocks the compression ratio across a shock is equal to the square of the

Mach Number (Choudhuri 1998). Thus the bow shock will have a compression ratio of

χB = ρ2/ρ1 = M2
B where MB is the bow shock Mach Number.

Our initial velocity perturbation has a maximum possible Mach number of 60. How-

ever, Figure 3.5 shows a histogram of the actual shocks that develop on grid which have

Mach numbers in the range of 2-6. This drop in Mach number is a natural consequence

of the initial clump formation. In the clumps the velocity of the post shock flow will be
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reduced by a factor of the inverse Mach number squared. The initial dense region of the

instability, which develops into the shocked clump, will at its slowest be moving at 50%

of the flow velocity. When the clump develops the postshock flow, region 2, will roughly

maintain this velocity as the transmitted shock does not impart much momentum to the

clump itself. The resulting velocity jump between the preshock and postshock flow will

the naturally give a Mach Number of roughly 8, not the original 60 the clump started

at. While classically not strong shocks in the adiabatic sense, which is reserved for Mach

numbers greater than 10, the clump bow shocks do have compression ratios significantly

higher than the normal factor of four for adiabatic shocks. In fact any isothermal shock

with a Mach number greater that 2 will have a compression ratio greater than 4, and

will be considered strong in the adiabatic sense.

Between regions 2 and 3 in Fig. 3.4 there is a contact discontinuity which separates

the post bowshock material and the shocked clump material. Normally for an adiabatic

shock the contact discontinuity could have a density gradient but no pressure gradient.

In isothermal clumps the requirement that there cannot be a pressure gradient across a

contact discontinuity dictates that the densities across the contact discontinuity must

be the same, thus ρ2 = ρ3.

This relation between region 2 and 3 then dictates the conditions for transmitted

shock that separates regions 3 and 4. The transmitted shock Mach Number will go as

MT =
√

ρ3/ρ4 =
√

ρ2/ρ4 =
√

χB/χc where χc = ρ4/ρ1 is the density contrast ratio

between the clump and the ambient wind. The clump crushing timescale then is just

τcc = lc/(MT cs) = lc
√

χc/(MBcs), where cs is the sound speed and lc is the radial clump

size. To get a sense of how fast the cloud is crushed let us construct an example clump

crushing time in the time units established above. The strongest bowshock expected is

MB = 8 and the largest clump contrast ratio is χc = 4. Thus tcc = 0.25 as compared

to the entire simulation which goes for tsim = 0.75. This means that the transmitted

shock propagates through the clump quickly with respect to total length the simulation.

Normally one would expect instabilities such as Rayleigh-Taylor (RT) and Kelvin-

Helmholtz (KH) to shred the clump. Rayleigh-Taylor instabilities are suppressed in

the isothermal case as the pressure and density gradients are always aligned. Kelvin-

Helmholtz can still occur at the contact discontinuity between the post bowshock flow

and the shocked clump. This shear layer will have a characteristic velocity of the post
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bowshock flow. Therefore the KH growth timescale goes as τKH = 2lc/v2 = 2χBlc/v1 =

2lcMB/cs. Thus the ratio of the clump crushing time and the Kelvin-Helmholtz time is

simply tKH/tcc = 2M2
B/
√

χc = 2MT MB . Since RT is suppressed and the KH timescale

is longer than the clump crushing timescale by a factor M2
B this means that the clumps

will remain coherent for a considerable amount of time before they are shredded. This

is evidenced by the lack of clump disruption seen in Fig 3.3.

Another timescale of interest is the timescale over which wind ram pressure in the

initial clump frame Pram = ρ1v
2
1 would accelerate the clump such that the bow shock

would dissipate, τram. The relevant equations for this are the following

PramA = mc
dvc

dt

ρ1(v1 − vc)
2A = ρ2Alc

dvc

dt
(3.2)

Where vc is the clump velocity in relation to its original frame of rest, A is the cross

sectional area presented to the wind, and the mass of the clump, mc, is assumed to be

ρ2Alc. We can solve this differential equation as follows, assuming the bow shock will

dissipate when v1 − vc = cs.

∫ v1−cs

0

1

(v1 − vc)2
dvc =

ρ1

ρ2lc

∫ τram

0
dt

τram = χBlc(
1

cs
− 1

v1
) =

M2
Blc
v1

(MB − 1) =
MBlc

cs
(MB − 1)

τram

τcc
=

M2
B√
χc

(MB − 1) (3.3)

For large bow shock Mach numbers eq. 3.3 reduces to τram/τcc = M3
B/
√

χc. Thus

only low Mach number clumps are actually accelerated back up to the wind speed in the

simulation time presented here. Since the clumps are dense and slow with respect to the

wind they produce a low density cavity behind the clump as the wind deflects around

them. The extent of the cavity is simply lcav = v1tclump = MBcsRc/(vw−MBcs), where

tclump is the how long the clump has been in the wind for and Rc is the radial distance

between the start location of the clump and its current location.
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3.2.3 Cosmic Ray Evolution

Figure 3.6 shows the CR proton spatial distribution in terms of p4f at the injection

momentum (pinj = 0.01) for t = 0.75. As noted in §3.2.1 due to the high magnetic

field in the clump the CRs are confined to the shocked clump region, particularly at

low momenta. The enhanced magnetic field in the clump scales as M2
B which leads to

a magnetic field increase of 1-2 orders of magnitude. This reduces the diffusion length

by the same factor, effectively confining low momenta CR’s to the shocked region.

However, as the momentum of the CRs increases they are able to leak out of the

shocked clump, as demonstrated in Figure 3.7 which shows the proton spatial distri-

bution at p = 1. The characteristic momentum at which the CRs leak out of the

clump will be when the diffusion length of the CRs in the clump equals the clump

size, lc = κ/v2. Putting in the relations that are derived in §3.2.2 we arrive at

lc = κop/(B1χBv2) = κop/(B1MBcs). Thus the characteristic momentum will be

p = B1MBcslc/κo = 0.03(B/1 mG)MB(lc/Rs). Thus in Figure 3.7 at p = 1 the ma-

jority of shocks will no longer confine the protons and therefore there are no large

concentrations of CRs at the shocks as there was in Figure 3.6.

The region behind the clump is a low density, low magnetic field zone as noted in

§3.2.2 and see in Fig. 3.3. When the CRs that escape the clump diffuse into this region

their diffusion length increases correspondingly. The increase in diffusion length allows

the CRs to fill the void in a short amount of time. While this effect is not prominent in

the protons, it is for the electrons at high momenta that are subject to energy losses.

Figure 3.8 shows the electron spatial distribution at p = 0.1. In Figure 3.8 one can

see large tails of electrons behind the clumps. These tails are created by the electrons

filling the cavity the exists behind the clump before suffering significant energy losses.

Whereas, outside the cavity the electrons do not diffuse far before succumbing to energy

losses. As the IC lifetime at high momentum is very short, this implies that the diffusion

length in the cavity region is large. The long diffusion length shows that the magnetic

field is weak in the cavities, which is expected due to magnetic field mimicking the gas

density as discussed in the previous section.

The volume integrated spectrum for the CR protons and electrons, p4F =
∫

p4f(p)dV ,

excluding the thermal population is shown in Fig. 3.9. Both the proton and electron

spectrum have a spectral slope of approximately 4, characteristic of acceleration at
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strong shocks. As noted in §3.2.2 for isothermal shocks a compression ratio of 4 is

reached very quickly at a Mach number of 2. Thus virtually all the shocks on the grid

will have compression ratios greater than their adiabatic analogs. The CR acceleration

is primarily dependant on the divergence of the velocity across the shock. As such the

CRs in the isothermal case will see every shock as a strong shock and will take on a

powerlaw slope of 4 indicative of that fact.

The high energy cutoff of the proton spectrum is around p = 1 (E = 1 GeV). This

is due to the protons no longer being confined by the clumps, as noted earlier in this

section. CR’s of this energy are able to stream freely away from the clump. However

the highest energy accelerated at the shocks is not expected to be uniform with radius.

Since the magnetic field scales as 1/R, we would expect the proton highest energy

protons accelerated to scale likewise as the confinement at the shock is controlled by

the magnetic field.

For the electrons the high energy cutoff is around p = 0.05−0.1 (E = 50−100 MeV).

The electron cutoff energy is controlled by two competing processes, energy gain of the

electrons at the shock and energy loss due to IC energy losses. To find this energy

one can equate the shock acceleration timescale, τa, and the energy loss timescale,

τr. The relevant equations for each of these processes are (Blumenthal & Gould 1970;

Blandford & Eichler 1987)
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The above formula shows that the maximum electron energy should scale as R1/2.

The radial evolution of the protons and electrons can be seen in Figure 3.10, where

p4F is calculated for annular bins centered on the star with a radial width of 25Rs.

The proton distribution starts off flatter in the interior of the wind then develops a

slight slope further out in the wind. The annuli at larger radii contain more particles as

expected as they contain more volume. However the largest radii shows a drop which is
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due to the clumps not completely filling that region. For the most part the distributions

are generally the same and show no sign of the 1/R evolution that we would expect

for the highest energy protons. However the protons do not lose energy except due to

adiabatic expansion which is not significant over such short timescales. As such the

protons accelerated to high energy when the clump was closer to the star will remain

close to that energy and will fill in the higher energy bins even if there is no further

particles being accelerated up to that energy. Thus the high energy cutoff will not

change significantly until much larger radii.

The electrons show a similar evolution radially to the protons, except for the high

energy cutoff which declines with radius. This is contrary to our expectation of a scaling

of R1/2. Implicit in that discussion was the assumption that the electrons were confined

to the shock and thus continually accelerated. However, at larger radii the confinement

momentum becomes smaller than the momentum calculated in Eq. 3.4 which ruins

the derived scaling relation. Thus the peak momentum accelerated by the electrons is

controlled by balancing the acceleration time, energy loss time, and the confinement of

the electrons to the shock.

3.3 Summary

We preformed a multidimensional MHD-DSA simulation of wind-embedded shocks near

an O-star assuming an isothermal wind. This simulation tracked the evolution of

both proton and electron populations including appropriate energy losses. The wind-

embedded shocks were seeded from the results of previous line driven instability cal-

culations. The instabilities develop into dense clumps that propagate slower than the

wind.

Unfortunately, the combined effects of the isothermal nature of the wind and a

diffusion coefficient dependant on the local magnetic field precluded any inclusion of

CR feedback in the dynamics. This was due to the intense magnetic field at the shocks

confining the majority of the particles to a very small region, thereby restricting the

ability of the CR pressure to weaken the shock. This creates a dense region of high

CR pressure which led to numerical instability. A further more dedicated study of CR

modified isothermal and radiative shocks is warranted in light of these results.
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The bow shocks for the wind clumps are typically Mach 2-6. While not impressive

by adiabatic terms, in an isothermal setting this shock velocity is enough to create

compression ratios by of 4-36. Thus virtually every shock in the wind is strong, at least

in the adiabatic sense of the term.

The CR spectrum for both electrons and protons has a spectral index of approxi-

mately 4, consistent with acceleration at strong shocks. The maximum electron energy

is about 100 MeV, which is controlled by the balance between shock acceleration and

energy losses due to IC. However at large radii, the confinement of the electrons to the

shock becomes important as well. The maximum proton energy is around 1 GeV, which

is controlled by the particle confinement by the magnetic field at the shock.

It is clear from these simulations that wind-embedded shocks can be efficient particle

accelerators. Though the effects of CR feedback have not been included, it is evident

that their contribution to the flow dynamics will be important. If the inclusion of CR

feedback disrupts the high compression ratio of the shocks, then they will cease to be

efficient accelerators as the CRs will no longer be effectively confined to the shock by

the magnetic field. In light of these results let us move forward and investigate CR

acceleration in the colliding wind binary scenario.
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Parameter Value

Ms 22 M⊙

Rs 8.5 R⊙

Ls 2.3× 105 L⊙

B(Rs) 10 G
Rin 50 Rs

Rout 200 Rs

vw 2000 km/s

Ṁ 10−6 M⊙/yr
vrot 25 km/s
Tw 104 K

Table 3.1: Wind Instability Model Parameters
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Figure 3.1: Illustration of the maximum line driving instability model used.
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Figure 3.2: Illustration of instability placement around driving region.
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Figure 3.3: Logarithm of the Gas Number Density at t = 0.75.
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Figure 3.4: Illustration of clump. Region 1 is the upstream flow, region 2 is the post
bow shock flow, region 3 is the shocked clump, and region 4 is the unshocked clump.
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Figure 3.5: Histogram of Number of Clumps at particular Mach Numbers at t = 0.75.
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Figure 3.6: Logarithm of p4f for protons at the injection momentum of p = 0.01 at
t = 0.75.
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Figure 3.7: Logarithm of p4f for protons at p = 1 at t = 0.75.
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Figure 3.8: Logarithm of p4f for electrons at p = 0.1 at t = 0.75.
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Figure 3.9: Integrated CR spectra for protons and electrons at t = 0.75.
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Figure 3.10: Integrated CR spectra in Annular Bins at t = 0.75. Protons on the left,
electrons on the right.
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Chapter 4

Multidimensional DSA in a O+O

star Colliding Wind Binary

As noted in the Chapter 1, the colliding wind binary scenario is the favored scenario

to explain the nonthermal emission seen from O-stars. Thus understanding the effects

of CR acceleration on the CR spectrum and MHD of the system is very important to

understanding the radiative emissions. Similar to the previous chapter we will first lay

out our simulation set up in §4.1 and then in §4.2 we will discuss the results of the

simulation.

4.1 Numerical Method

Similar to Chapter 3 we again neglect gravity, radiative driving, as well as radiative

heating and cooling for this simulation. Thus we will only treat the MHD-DSA for this

simulation. We will discuss the particulars of MHD-DSA solver used for this simulation

in §4.1.1 and in §4.1.2 we layout the initial conditions for this simulation.

4.1.1 MHD-DSA Solver

We will use the DSA solver describe in Chapter 2 in conjunction with the WOMBAT

MHD solver combined with the injection model described in the next section which

replaces the one discussed in Chapter 2. As we did in Chapter 3 we will use 2.5-D

56
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cylindrical coordinates to simplify the simulation and reduce computational cost.

4.1.1.1 Injection

Injection for this model is handled via a simple flux fraction model which is injected

as a spectrum over multiple bins rather than into a single momentum bin. In this

model a small, fixed fraction of the thermal particle flux through the gas subshock,

ǫinj, is injected as a powerlaw spectrum at the subshock. As in the previous injection

model, the minimum momentum for the powerlaw spectrum is pmin = αcs2
, where

α is a constant greater than unity and cs2
is the plasma sound speed immediately

downstream of the subshock (e.g. Jones & Kang (2005)). We will set α = 2.0 for

this simulation, which is the commonly accepted value (Jones & Kang 2005). The

maximum momentum, pmax, for the powerlaw spectrum is the momentum at which

the particle’s precursor diffusion length becomes computationally resolved which occurs

when κ(pmax)/us > 10∆x (Jones & Kang 2005). The spectral slope is determined from

the standard formula for test particle DSA, q = 3χ/(χ − 1), where χ = ρ2/ρ1 which is

the subshock compression ratio (Blandford & Eichler 1987).

This gives a source term for equation 2.1 of S(p) = ǫinj(ρ1/(µmp))usw(x− xs)(q −
3)/(p3−q

min − p3−q
max)p−q. Where µ is the mean molecular weight, us is the subshock speed

with respect to the plasma immediately upstream, xs is the location of the shock center,

and w is a normalized weight function that allows the injection to be distributed across

the numerical shock structure. This distribution is put in place in order to prevent

discontinuities in the CR distribution. The energy extracted from the thermal plasma

is simply L = 1
2ǫinjw(x)α2c2

s2
ρ1us.

The above model for injection assumes that the spectrum below pmax can be ex-

pressed in a form appropriate for test particle DSA. This implicitly assumes that any

shock modification occurs over larger scales than the characteristic precursor diffusion

length of pmax. Previous simulations of CR modified shocks with Mach numbers greater

than 10 have demonstrated that for energies below around 1 GeV the CR spectrum can

be expressed in test particle form (Kang et al. 2009). The shocks in this simulation

have Mach numbers much greater than 10. As such this assumption should be valid so

long as the injected spectrum is tied to the evolution of the subshock structure.
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4.1.2 Simulation Setup

The initial conditions used for the winds from the stars in this simulation are almost

identical to the winds described in §3.1.2. This is to aid in comparing the results of the

two simulations against one another in Chapter 5. The nature of the stars, stellar wind

velocity, mass loss rate, magnetic fields, particle diffusion, and particle energy losses

are all the same as in §3.1.2. As such we will only describe the components that are

different in this simulation from the previous one. Table 4.1 contains the parameters

for the simulation.

In this simulation we no longer inject line driven instabilities into the wind, nor do

we use the isothermal assumption. We also assume that both stars are identical and

have identical winds. This is done in order to simplify the simulation. For electron

energy losses due to IC, the radiation field now includes the effects from both stars.

As in Chapter 3, the wind temperature is maintained at 104 K due to photo-

ionization from the star’s ultraviolet (UV) flux which prevents the wind from cooling

due to adiabatic expansion (Lamers & Cassinelli 1999). The wind is not only heated

due to the radiation flux from the star but strong metal lines cool the gas when heated

above 104 K (Kholtygin et al. 2003). The shocks generated by the colliding winds have

a very high Mach number (Msh = 120) and heat the ambient wind to ∼ 5 × 107 K.

This temperature is too hot for efficient metal line cooling. As such the cooling length

is much larger than the simulation domain. This is in contrast to Chapter 3, where the

cooling length was much shorter than the simulation resolution. To effectively model

this situation we will treat the wind as an adiabatic fully ionized proton-electron plasma

(γg = 5/3) with a temperature floor of 104 K. This will allow the shock to heat normally

while preventing the wind from cooling below 104 K due to the expansion of the winds.

Similar to previous simulation, the wind driving region has a radius of 50 Rs, which

is well outside of the wind acceleration zone. The separation, D, between the two stars

is 400 Rs. This gives an orbital period for the two stars of 3.37 years and an orbital

velocity of 11 km/s. This velocity is much less than the wind velocity and the orbital

period is much longer than the dynamical time for the winds. Therefore we will ignore

effects due to the orbital motion.

The expected maximum proton energy in this simulation can be found based on the

condition that the characteristic precursor diffusion length, ld ∼ κ/us, of the particle
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be contained in the system that is accelerating it. Using a characteristic magnetic field

strength of 1 mG at the shocks, a shock velocity of 2000 km/s and a physical extent of

400 Rs we expect the maximum momentum for the CR protons to be about p ≈ 1000

(E ≈ 1 TeV). Knowing this we will set the CR momentum range to span 16 momentum

bins logarithmically spaced between 0.000912 < p < 8106.

Given the requirements for injection discussed in §4.1.1.1 we set our maximum in-

jection momentum at pmax = 0.368 and the grid resolution to ∆x = 0.03333 Rs. The

total box size extends from −300 Rs < z < 300 Rs and 0 < r < 100 Rs with the stars

located at ±200 Rs giving a total box size of 18000×3000. Thus the simulation region is

focused on the apex of the colliding wind flow. This is the region where most the most

efficient acceleration is expected to take place. The higher efficiency is due to the higher

shock Mach numbers and high magnetic fields in this region due to the proximity to the

stars. Since we care about the MHD-DSA evolution when the colliding wind systems

reaches steady state, we initially run a pure MHD simulation to get the system in to

its steady state configuration. Once steady state is achieved, we then turn on the DSA

portion of the code and allow the CRs to affect the shock evolution from then on out.

4.2 Results

4.2.1 MHD Evolution

The top panel of Figure 4.1 shows the gas number density when the pure MHD sim-

ulation reaches steady state. In steady state without CR feedback the colliding winds

form into two standing reverse shocks (Msh = 120). A contact discontinuity separates

the flows from each stars. Since the stars are the same in terms of flow parameters the

contact discontinuity is located at D/2. To measure the importance of the magnetic

field we will use β, which is defined as the ratio of the gas pressure to the magnetic

pressure. In this simulation β = 300. As such we can safely ignore the magnetic field

in terms of its effects on the dynamics. The large β also means that the azimuthal

magnetic field is frozen into the plasma and mimics the evolution of the density.

The expected position of the two shocks in steady state can be derived as follows

assuming the shock separation is much smaller than D (e.g., Luo et al. (1990)). Let us

consider a cylinder that has its z axis aligned with the line that connects the two stars,
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see Figure 4.2 for illustration. For this exercise we will constrain ourselves to the region

around the apex where the shocks can be approximated as plane shocks. We will set

the length of the cylinder along the z axis to be the distance between the two shocks,

h. The radius of the top and bottom of the cylinder will be s.

In steady state the amount of material flowing into this cylinder must be the same as

the amount flowing out. The net flux of material into the top and bottom of the cylinder

is defined by the amount of material flowing into the shocks, which is simply 2Aρwvw. A

is the surface area of the top or bottom of the cylinder, πs2. The flux of material leaving

the sides of the cylinder is defined by the conditions in the postshock medium. In the

postshock environment the density of the wind is compressed by a factor χt = ρ2/ρ0.

As discussed in §2.1, ’2’ is the postshock conditions and ’0’ is the unmodified, upstream

conditions. The velocity in the direction of the shock normal stagnates as the opposing

velocities of the flows from the two stars cancel the wind’s momentum in this direction.

This cancellation means the velocity parallel to the shock does not contribute to the

flux out of the cylinder. Since the stellar winds flow out radially from the stars and the

shocks are planes there is also a velocity component that is perpendicular to the shock

normal. This component is not affected by the shock or the opposing wind and can

be approximated as v⊥ = 2vws/D. Combining the postshock density with this velocity

we end up with a mass flux of 2Wχtρwvws/D. W is the surface area of the side of

the cylinder, 2πsh. Setting the flux into the cylinder equal to the flux out and doing

some algebra we end up with the condition that h = D/(2χt). Thus for a strong shock

h = D/8 which corresponds nicely with the shock separation seen in Figure 4.1.

The bottom panel of Figure 4.1 shows the gas number density when the combined

MHD-DSA reaches steady state. The total compression ratio of the gas, χt, has in-

creased to a factor of about 4.5. The higher compression is typical of CR modified

shocks as the precursor compresses and heats the gas before it encounters the subshock.

The heating while enough to give a boost to the density flowing into the subshock is

not enough to weaken the compression at the subshock which is still a factor of 4. The

additional compression effects the distance between the two shocks such that now their

separation is D/9, a net change of about 10%

An image of the CR pressure normalized by a characteristic wind ram pressure can

be seen in Figure 4.3 in steady state. The characteristic undisturbed wind ram pressure
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used is ρw,Rs
/(D/2)2v2

w. Where ρw,Rs
is the density of the wind at the stellar surface.

This is the ram pressure at the contact discontinuity if the wind was unshocked. It is

approximately the same ram pressure seen by the shocks since D ≫ h. One can see that

the CR pressure is mainly confined to the immediate upstream region of the shocks and

the postshock region. In the postshock flow about 15% of the incoming ram pressure is

converted into CR pressure. This causes a corresponding drop in the gas pressure. When

combined with the increase in density the resulting postshock temperature is lower than

it would normally be for a shock of this Mach number. However this temperature change

is not enough to move the postshock medium into a regime where it would strongly cool

due to line emission.

If the injection of CR’s were stronger than what is modeled here we expect there to

be significantly more shock modification. Based on the effects seen here we would expect

the postshock density to increase and a corresponding decrease in the shock separation.

We would also expect more preheating in the wind. However any heating of the wind by

the CR precursor will take the wind away from its floor temperature of 104 K. This will

make it susceptible to radiative line cooling. The same can be said for the postshock

flow as the CR pressure typically weakens the shock Mach number. This can reduce the

postshock temperature to a regime where cooling is important. The combined effects

of radiative line cooling and CR feedback are not well studied as currently only two

fluid models exist (e.g., Wagner et al. (2006)). As such further study in to the high CR

injection regime and the effects of radiative line cooling is warranted.

4.2.2 CR Evolution

The volume integrated spectrum for the CR protons and electrons, p4F =
∫

p4f(p)dV ,

excluding the thermal population is shown in Fig. 4.4. The spectral index of the proton

and electron spectra is 4 at low momenta, indicative of strong shocks. Normally for CR

modified shocks we would expect to see a curved spectrum. This curved spectrum is

due to the differing velocity divergences seen by CR’s of differing momenta. However, in

this case the subshock compression is always 4 because the subshock is never modified

to the point were it ceases to be a strong shock. This keeps the CR spectrum flat.

In §4.1.2 we stated that the peak proton momentum is pmax = DusB/(2κo) ≈ 1000

(E ≈ 1 TeV) which is consistent with Figure 4.4. This constraint comes from the
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requirement that a particle must be confined by the system accelerating it. At larger

diffusion lengths that D the particles see a diverging flow rather than a converging flow.

At that point the particles will simply escape the system.

This can be seen by looking at the top panel of Figure 4.5 which shows the phase

space distribution of p4f for protons in a spatial cut that is parallel to the shock normal.

Also around that same momenta the CRs are diffusing far enough to encounter both

shocks. This is due to the postshock magnetic field being enhanced by a factor of roughly

4, which decreases the diffusion length correspondingly. Thus when the diffusion length

inside the shocks equals the distance between the shocks, D/9, the CRs upstream of

the shocks diffuse roughly the distance to the stars. This means that the effects of

acceleration at both of the shocks is mitigated due to particles no longer being bound

to the system.

For the electrons there is a spectral break at 100 MeV and then a high energy cutoff

around 1 GeV. The spectral break at 100 MeV can be explained by the electrons cooling

as they propagate away from the shock due to diffusion and advection. This effect can

be seen clearly in the bottom panel of Figure 4.5 which shows the electron phase space

distribution of p4f in a spatial cut that is parallel to the shock normal. The regions close

to the shock are dominated by the combined effects of particle acceleration and energy

loss. As the particles move further from the shock they are no longer participating in

the acceleration and only lose energy due to IC. At high energy only those regions close

to the shock are contributing to the integrated spectrum. Whereas at lower energy the

entire postshock region contributes to the integrated spectrum which is a much larger

volume.

This behavior has been noted in the modeling supernova remnants as well (e.g., Berezhko et al.

(2002)). In those studies it has been shown that the spectral break can be found by the

following formula (Berezhko et al. 2002)

Ee,break =
3m2

ec
3

4σT urt
= 2.6× 10−2 MeV

Ls

L

(

R

Rs

)2 1 day

t
(4.1)

where R is the distance to the shock, ur is the radiation energy density, and t is

the time it takes for the postshock flows to reach the contact discontinuity. In this

simulation R ∼ 200Rs and t ∼ 10 days giving a break energy of 100 MeV. This spectral
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break only shows up in the integrated spectrum as it created by a volume filling effect.

At any given location in the postshock flow the CR spectrum will not show this break.

Rather the spectrum is a simple powerlaw with a high energy cutoff dependant on the

history of the electrons in that location.

The electron cutoff energy seen in Fig. 4.4 is determined by two competing pro-

cesses, energy gain of the electrons at the shock and energy loss due to IC energy

losses. To find this energy one can equate the shock acceleration timescale, τa, and

the energy loss timescale, τr. The relevant equations for each of these processes are

(Blumenthal & Gould 1970; Blandford & Eichler 1987)
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Assuming a shock location at about D/2 and shock velocity of 2000 km/s the ex-

pected peak electron energy is 8.3 GeV. This is close to the cutoff energy seen in Fig.

4.4 and is consistent with the peak electron energies seen in bottom panel of Figure 4.5.

4.3 Summary

We performed a multidimensional MHD-DSA simulation of O-star colliding wind shocks.

This simulation tracked the evolution of both proton and electron populations including

appropriate energy losses. It also included the effects of CR feedback.

With an injection fraction of 10−4, about 15% of the wind ram pressure is converted

into CR pressure at the shock. The resulting CR precursor is not enough to significantly

reduce the flow velocity before it encounters the subshock. However, the compression

in the precursor is enough to raise the total compression ratio, which in turn affects the

shock separation. If a higher injection fraction where used the precursor heating and

weakening of the subshock may be sufficient to put the flow in to a regime where radiative

cooling is important. In this scenario the combined effects of strong CR feedback and
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radiative cooling could dramatically change the dynamics.

The CR spectrum for both electrons and protons has a spectral index of 4, consistent

with acceleration at strong shocks even though the shock is modified due to CR pressure.

This is due to the heating by the CR precursor being weak. This in turn allows the

subshock compression ratio to remain about 4. The maximum electron energy is about

1 GeV, which is controlled by the balance between shock acceleration and energy losses

due to IC. The maximum proton energy is around 1 TeV, which is controlled by the

particle confinement by the converging winds.

It is clear from these simulations that colliding shocks can be efficient particle ac-

celerators and will be modified by CR pressure. With these results let us now take a

larger look and compare with the results of the previous chapter.
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Parameter Value

Ms 22 M⊙

Rs 8.5 R⊙

Ls 2.3× 105 L⊙

B(Rs) 10 G
Rin 50 Rs

D 400 Rs

vw 2000 km/s

Ṁ 10−6 M⊙/yr
vrot 25 km/s
T 104 K

Table 4.1: Colliding Wind Binary Model Parameters
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Figure 4.1: Image of the Density. Top image is from the initial conditions for when the
DSA solver was turned on, the bottom is from the end of the simulation.
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Figure 4.2: Schematic of cylinder used to derive the shock separation.
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Figure 4.3: Image of the normalized CR pressure at the end of the simulation.
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Figure 4.4: Integrated CR spectra for protons and electrons at the end of the simulation.
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Figure 4.5: Phase Space of p4f for a cut parallel to the simulation’s z-axis in the middle
of the grid. The horizontal axis of the image is location along the simulation’s z-axis,
and the vertical axis is in ln(p). The top image is the protons and the bottom are the
electrons.
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Conclusion and Discussion

5.1 Summary and Conclusions

We presented in Chapter 2 the first multidimensional DSA solver called MAST. This

solver handles multidimensional CR acceleration self consistently using kinetic DSA.

It was demonstrated that the MAST solver produces results approximately the same

as normal kinetic solvers in one and two dimensions. This allows for the exploration

of more complex multidimensional flows with the benefits of parallel computation and

AMR.

With this new code we preformed two sets of multidimensional MHD-DSA simula-

tions, one of wind-embedded shocks and the other of a colliding wind binary. In the

following sections we will compare and contrast the two scenarios. First we will investi-

gate the effects of CR feedback (§5.1.1). Next we will look at the CR spectra from both

simulations (§5.1.2). We will then look at the potential for these two cases to explain

the nonthermal emission (§5.1.3). Finally we will outline future work that needs to be

done to understand these systems (§5.2)

5.1.1 CR Feedback

We modeled the wind-embedded shocks near an O-star as an isothermal wind, owing

to the strong radiative heating and cooling in the wind. Unfortunately, the combined

effects of the isothermal nature of the wind, and a diffusion coefficient dependant on the

local magnetic field precluded any inclusion of CR feedback in the dynamics. Due to the

71
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high compression ratios, the magnetic field was intensified at the shocks. The majority

of the particles were confined by the field to a very small region. This restricted the

ability of the CR pressure to weaken the shock. A dense region of high CR pressure

was created which led to a numerical instability.

In the colliding wind case, CR feedback was successfully included. It was found

that with an injection fraction of 10−4, about 15% of the wind ram pressure was con-

verted into CR pressure at the shock. The resulting CR precursor was not enough to

significantly reduce the flow velocity before it encountered the subshock. However, the

compression in the precursor was enough to raise the total compression ratio, which in

turn affected the shock separation. If a higher injection fraction were used, the extra

precursor heating and weakening of the subshock might have been sufficient to put the

flow in to a regime where radiative cooling is important. In this scenario the com-

bined effects of strong CR feedback and radiative cooling could dramatically change the

dynamics.

Both these simulations illustrate the need for greater understanding of CR modified

radiative shocks. As noted previously, very little research has been done into these type

of shocks. This gap in our understanding needs to be rectified if we hope to understand

more complex systems that include these effects. Thus more extensive 1-D modeling of

DSA at radiative shocks in a simpler environment is needed.

5.1.2 CR Spectra

The CR spectra for both cases look very similar. Both have powerlaw slopes of approxi-

mately 4. In the wind embedded shock scenario this was due to the high compression at

the shocks due to the isothermal nature of the wind. For the colliding wind case it was

due to the subshock compression remaining 4 in spite of the CR precursor preheating

the gas.

The maximum proton energies were determined by the diffusion lengths of the par-

ticles exceeding the scale of the systems accelerating them. This occurred at about 1

GeV for the wind embedded shock case and 1 TeV for the colliding wind binary. The

maximum electron energy was controlled by the balance between shock acceleration and

energy losses due to IC. However, for the wind embedded shocks particle confinement

by the shock magnetic field becomes important at large radii as well. The maximum
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electron energy was 100 MeV for the wind-embedded shocks, and 1 GeV for the colliding

wind binary.

Both cases demonstrated efficient particle acceleration, though for different reasons.

The isothermal conditions in the wind-embedded shock scenario gave rise to very high

compression ratios. This made the shocks behave more like strong adiabatic shocks, even

though the shock Mach numbers would be considered weak by adiabatic standards. In

the colliding wind case, the shocks were strong and stationary allowing them to process

significant amounts of CRs and accelerate them up to high energy.

5.1.3 Potential for Nonthermal Emission

Full analysis of the radiative emission from these simulations will not be covered in

this work. We cannot safely provide an simple model for the spectral index of the

emissions nor the magnitude. This is due to absorption processes and geometry playing

a significant role in shaping the observed emissions (Reimer et al. 2006). However, we

can estimate what energy bands these systems would be emitting in based on the peak

particle energies.

For the electrons, synchrotron and IC will be the dominant nonthermal processes.

At low frequency the synchrotron emission will be cut off due to free-free absorption

and the local plasma frequency (e.g., Reimer et al. (2006); van Loo et al. (2006)). The

synchrotron cutoff at high frequency is approximately the synchrotron critical frequency

at the peak energy, 3
2νBγ2

e,peak (Blumenthal & Gould 1970). νB is the nonrelativistic

cyclotron frequency and γe,peak is the electron Lorentz factor at the peak energy.

In the case of the colliding wind binary assuming a characteristic magnetic field of

1 mG and a cutoff energy of 1 GeV, gives a frequency of about 20 GHz. For the wind-

embedded shocks assuming a characteristic shock magnetic field of 20 mG and a cutoff

energy of 100 MeV, gives a frequency of about 3 GHz. The actual peak frequencies would

be higher if we had properly accounted for the Klein-Nishina limit in the electron energy

losses. The magnetic field also varies considerably with location in the wind-embedded

shock scenario, which could boost the peak frequency. Nonetheless, the synchrotron

frequencies are in normal radio observation bands for these systems (e.g., van Loo et al.

(2006)).

However, it is clear from these estimates that the colliding wind binary has more
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potential to extend into high radio frequencies. This is important because free-free

absorption becomes less important as the frequency increases. Thus the radio emission

is less likely to be completely extincted due to absorption. On the other hand the wind-

embedded scenario, with its lower peak frequency, could be quashed by the free-free

absorption. While not conclusive until the full radiation modeling is done, it seems very

likely that only the colliding wind binary scenario will be able to produce enough radio

emission to exceed the absorption by the wind. This would exclude the wind-embedded

shock scenario from being able to replicate the observed emission.

In IC the radiation spectrum for both systems starts in the soft X-ray then ex-

tend up to a peak electron energy of 1 GeV for the colliding wind, and 100 MeV for

the wind embedded shocks. This is due to KN being an important effect in this en-

vironment. KN limits the peak energy of photons to be equal to the electron energy

(Blumenthal & Gould 1970). With IC being produced throughout the X-ray band, these

systems are fully capable of explaining the nonthermal X-ray measurements. However,

the X-ray band is also dominated by thermal bremsstrahlung which can swamp out the

IC signal.

For the protons, pion production via proton-proton collisions will be an important

emission process in colliding wind binaries. The threshold for pion production is about

2 GeV, meaning that there is a considerable population of supra-threshold protons. The

energy band for the pion spectrum can be found from the simple relation of Eγ = 0.1Ep

(Kelner et al. 2006). Thus the spectrum will extend from 200 MeV up to a peak photon

energy of about 100 GeV. While not quite to TeV energies, the potential parameter

space for these systems is large. Thus with more extreme parameters the colliding

winds could produce TeV energy photons. In the wind embedded shock case, none of

the protons are above the threshold energy. Hence, there will be no pion production.

5.2 Future Work

Full radiation models will be computed in the future for both simulations in order to

compare them to the observations. These models will help investigate whether the

wind embedded scenario is excluded or not. As noted before the effects of free-free

absorption could completely extinguish the radio emission from the wind-embedded
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shock scenario. The same question exists for the colliding wind binary, though with its

emission extending to higher frequency it is less likely to be fully absorbed. It will also

be of great interest to see if the resulting emissions from the colliding wind binary are

analogous to the reported X-ray and gamma-ray observations.

However, caution must be taken with these future emission models as the combined

effects of radiative cooling and CR feedback could significantly change the results from

these simulations. To investigate this, new 1-D simulations will be undertaken to model

DSA in radiative shocks. These new simulations will allow us to see how these shocks

behave in the presence of CR feedback. The results from the simulations will lay the

ground work for future DSA simulations of colliding wind binaries and wind-embedded

shocks that include the effects of radiative line cooling in the shocks.

Future simulations will also model the outer wind collision region of the colliding

wind binary scenario. This region contains the majority of the wind collision zone.

Given the efficiency of the shocks in the colliding wind simulation, it is clear that the

outer collision zone will be an important part of the CR acceleration picture in these

systems. The large volume of this region could also contribute considerably to the

radiative emission.
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Appendix A

Energy Losses in CGMV

While Jones & Kang (2005) briefly discusses how to add terms such as energy losses to

the DC equation they do not directly show how it is to be done. We will show here

how to add in synchrotron and inverse Compton (IC) energy losses to the DC equation

in CGMV. These two loss mechanisms are very important when modeling electron

acceleration and diffusion, and is commonly desired for most astrophysical situations.

Looking back at eq. (2.1) one can see that additional terms to the DC equation

can be added via the S term. For synchrotron energy losses, IC has a similar form,

Blandford & Eichler (1987) gives,

S =
1

p2

∂

∂p

(

p4f

τs

)

(A.1)

Where τs is the scaling for the losses which may be dependent on other factors,

such as magnetic field energy density, but has the momentum dependence extracted.

Eq. (A.1) needs to be transformed such that it will work as a source term for the

transformed DC equations for n and g, as seen in eqns (9) and (13) in Jones & Kang

(2005). To get the contribution to the n DC eq. one needs to multiply eq. (A.1) by p2

and integrate over the momentum bin, similar to eq. (2.4).
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Snj
= 1

τs

∫ pj+1

pj

∂
∂p(p4f)dp

= 1
τs

p4f |pj+1

pj

= 1
τs

(

qj+1−3
“

1−d
3−qj+1

j+1

”nj+1pj+1 − qj−3
“

1−d
3−qj
j

”njpj

)

(A.2)

Where nj =
p3

jfj

qj−3(1− d
3−qj

j ) with qj being the bin slope and dj = pj+1/pj.

The source term for g is achieved by multiplying eq. (A.1) by p3 and integrating.

Sgj
= 1

τs

∫ pj+1

pj
p ∂

∂p(p4f)dp

= 1
τs

(

p5f |pj+1

pj
−
∫ pj+1

pj
p4fdp

)

= 1
τs

(

qj+1−4
“

1−d
4−qj+1

j+1

”gj+1pj+1 − qj−4
“

1−d
4−qj
j

”gjpj − (qj−4)
(qj−5)

(1−d
5−qj+1

j+1
)

(1−d
4−qj+1

j+1
)
gjpj

)

(A.3)

Where gj =
p4

jfj

qj−4 (1− d
4−qj

j ). One can now see by analogy how one would go about

adding terms to the DC eq. in the CGMV formulation. One simply takes the term and

multiplies by either p2 or p3 depending on whether one is treating n or g then integrate

the expression across a bin.
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Appendix B

2-D Cylindrical Coordinates in

CGMV

Other geometries than Cartesian have been used in the past to exploit symmetries in

the system being modeled (e.g. Kang & Jones (2006)). For several astrophysical situa-

tions, such as supernovae and stellar winds, cylindrical coordinates are an appropriate

coordinate system. For this exercise we will treat 2-D cylindrical coordinates with the

z-axis being the symmetry axis. In order to see what modifications we need to make in

cylindrical coordinates let us consider the multidimensional form of the DC eq.

df

dt
=

1

3
(∇ · ~u)

∂f

∂y
+∇ · (←→κ · ∇f) (B.1)

We have dropped the source terms in this equation as we wish to focus on the

diffusion and momentum convection components of the equation. We will assume that

the diffusion coefficient, ←→κ , does not have any off diagonal terms for this exercise. In

cylindrical coordinates the z coordinate looks exactly the same as Cartesian but the r

coordinate looks like

df

dt
=

1

3r

∂(rur)

∂r

∂f

∂y
+

1

r

∂

∂r

(

rκr
∂f

∂r

)

(B.2)

The first term is solved in CGMV, for which the only correction is the treatment of

the divergence of the velocity in the radial direction. The second term is solved using the
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CN scheme which is a bit more complicated. We will compute the case for f here with

the extension to n and g being analogous. For the CN scheme we solve the following

equations:

∂f

∂t
=

1

r

∂

∂r

(

rκr
∂f

∂r

)

=
1

r

∂(rF )

∂r

fk+1
i = fk

i −
1

ri

∆t

∆x

(

ri+1/2F̄i+1/2 − ri−1/2F̄i−1/2

)

F̄i+1/2 = −κi+1/2

(

f̄i+1 − f̄i

∆x

)

f̄i =
1

2

(

fk+1
i + fk

i

)

κi+1/2 =
1

2
(κi+1 + κi) (B.3)

Where k is the time step counter and i is the position in r. After some algebra one

can produce the following equations

A+
i fk+1

i+1 + A0
i f

k+1
i + A−

i fk+1
i−1 = C0

i ,

ai+1/2 = ri+1/2κi+1/2, bi =
1

ri
δ, δ =

∆t

2(∆x)2

A+
i = −biai+1/2

A0
i = 1 + bi(ai+1/2 + ai−1/2)

A−
i = −biai−1/2

C0
i = biai+1/2f

k
i+1 + (1− bi(ai+1/2 + ai−1/2))f

k
i + biai−1/2f

k
i−1 (B.4)

As can be seen the actual changes that need to be made to the CN scheme can be

applied as a correction to κ and δ. Precautions should be taken when the radius is small

or zero. Also the radius should be always positive.
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